Hermite Collocation and SSPRK Schemes for the Numerical Treatment of a Generalized Kolmogorov-Petrovskii-Piskunov Equation

نویسندگان

  • I. E. Athanasakis
  • Y. G. Saridakis
چکیده

In this study we develop high order numerical methods to capture the spatiotemporal dynamics of a generalized Kolmogorov-Petrovskii-Piskunov (KPP) equation characterized by density dependent non-linear diffusion. Towards this direction we consider third order Strong Stability Preserving Runge-Kutta (SSPRK) temporal discretization schemes coupled with the fourth order Hermite cubic Collocation (HC) spatial discretization method. We numerically investigate their convergence properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized KPP equation. The Hadamard product is used to characterize the collocation discretized non-linear equation terms. Several numerical experiments are included to demonstrate the performance of the methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit and Exact Solutions to a Kolmogorov-Petrovskii-Piskunov Equation

Some explicit traveling wave solutions to a Kolmogorov-PetrovskiiPiskunov equation are presented through two ansätze. By a Cole-Hopf transformation, this Kolmogorov-Petrovskii-Piskunov equation is also written as a bilinear equation and further two solutions to describe nonlinear interaction of traveling waves are generated. Bäcklund transformations of the linear form and some special cases are...

متن کامل

Numerical methods for the generalized Fisher – Kolmogorov – Petrovskii – Piskunov equation ✩

In this paper we study numerical methods for solving integro-differential equations which generalize the well-known Fisher equation. The numerical methods are obtained considering the MOL (Method of Lines) approach. The stability and convergence of the methods are studied. Numerical results illustrating the theoretical results proved are also included. © 2006 IMACS. Published by Elsevier B.V. A...

متن کامل

Travelling Wave Solution of the Kolmogorov-Petrovskii-Piskunov Equation by the First Integral Method

In this paper, the first integral method is proposed to solve the KolmogorovPetrovskii-Piskunov equation. New exact travelling wave solutions of the KolmogorovPetrovskii-Piskunov equation are obtained that illustrate the efficiency of the method. 2010 Mathematics Subject Classification: 35K57

متن کامل

KPP invasions in periodic media: lecture notes for the Toulouse KPP school

with a smooth function μ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. This equation is known as the Fisher-Kolmogorov-Petrovskii-Piskunov, or Fisher-KPP equation, and was introduced in 1937 by Fisher, and KPP, in their two respective papers, Fisher’s paper focusing on numerical and “applied tools” analysis, and KPP giving a rigorous mathematical treatment. Both papers were pione...

متن کامل

Stochastic solution of a nonlinear fractional differential equation

A stochastic solution is constructed for a fractional generalization of the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses a fractional generalization of the branching exponential process and propagation processes which are spectral integrals of Levy processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015